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There are manufacturing applications like surface modification and repair technologies where metal
particles go into the superheated melt pool heated by an intense heat source and as the workpiece moves
away from the energy source this pool solidifies to form a continuous built-up layer. In the present study
two-dimensional axisymmetric Navier–Stokes and energy equations are solved using finite volume
method to predict the time required for a metal sphere to melt in a melt pool of the same material. The
effect of forced convection, characterised by Reynolds number, and superheat of the melt pool, char-
acterised by Stefan number, has been studied in detail for material of different Prandtl numbers. Effect of
buoyancy is neglected for the present investigation. It is found that the effect of convection on melting
time is more pronounced if RePr/Ste2/3 is high. The rate of melting of the metal sphere with time under
different conditions is also presented. Finally, the heat transfer characteristic is represented by the
correlation of Nusselt number with Reynolds number, Stefan number and Prandtl number.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

There are manufacturing applications like cladding, surface
alloying and other surface repair technologies where metal powder
particles of radius 10–100 mm are injected into the superheated
melt pool under intense energy source with velocity in the range of
0.1–10 m/s. The powder particles melt and mix with the
surrounding liquid. The rate of melting of these particles depends
on the rate of heat transfer from the surrounding superheated
liquid. It is important to study the heat transfer characteristics of
these melting particles and the factors that influence this heat
transport.

There are a few studies on the melting dynamics of non-metallic
spheres at different convective regimes. Kranse and Schenk [1]
performed experiments on free convection melting of a submerged
benzene sphere in an excess amount of its own liquid (Pr¼ 8.3 and
108<GrD< 109). The results provided an equation for the Nusselt
number in terms of the Grashof and Prandtl numbers. Schenk and
Schenkels [2] have considered melting of an ice sphere in water, the
uniform temperature of which is varied between 0 �C and 10 �C,
under free convection regime. They accounted for the effect of
convection inversion due to the anomalous behaviour of thermal
son SAS. All rights reserved.
expansion coefficient of the water near water temperature of 4 �C.
[3] visualised melting of a wax sphere in hot water and calculated
the melting rate using a simple theoretical analysis which estimates
melt layer thickness and heat flux from the fluid. The qualitative
and quantitative analyses of melting process of ice spheres have
been performed experimentally by [4,5] under forced and mixed
convective regimes. They calculated the time variations of local
melting rate, local heat transfer coefficient and local Nusselt
number at different angular positions by recording the change of
shape of the melting ice spheres with time at different velocities
and supply temperatures of water for different initial temperatures
of ice. They have also given a correlation relating average Nusselt
number to Reynolds number, Grashof number, Prandtl number and
Stefan number for 80� ReD� 3200, 0:0016 � GrD=Re2

D ¼ 6:98,
7.91� Pr� 12.69 and 0.05� Ste� 0.39 (GrD and ReD are Grashof
and Reynolds number based on initial diameter of the sphere).

Melting of a metal spherical particle in a superheated fluid of
same or different materials has been studied extensively. Kreith
et al. [6] performed an experimental and theoretical investigation
of rotating metallic spheres in liquid mercury and suggested
a correlation for forced convection. Hsu [7] has given expression for
the theoretical Nusselt number for the cases of heat transfer to
liquid metals flowing past a single sphere, and past an elliptical rod
considering potential flow around the solid object. Anselmo et al.
[8] have presented the theoretical and experimental results on the
melting of both fully and partially immersed silicon spheres.
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Nomenclature

Symbols
A Porosity function (kg/m2 s)
fl liquid fraction
h specific sensible enthalpy (J/kg)
Hc heat transfer coefficient (W/m2 �C)
L specific latent heat of fusion (J/kg)
k thermal conductivity (W/m �C)
Nu Nusselt number
p pressure (N/m2)
Pr Prandtl number
R radius of solid sphere (m)
ReD Reynolds number based on diameter
Re Reynolds number
r, z cylindrical coordinate system (m)
Ste Stefan number
t time (s)
UN free stream velocity along z-direction (m/s)

vr, vz velocity component in r, z-direction (m/s)
V velocity vector (m/s)

Greek symbols
a thermal diffusivity (m2/s)
n kinematic viscosity (m2/s)
j stream function (kg/s)
r density (kg/m3)
s dimensionless time

Subscript
b boiling
N free stream condition
l liquidus
0 initial condition i.e., at t¼ 0
s solidus or solid

Superscript
* dimensionless variable

A. Kumar, S. Roy / International Journal of Thermal Sciences 49 (2010) 397–408398
Numerical and experimental investigations on the melting time of
solid sphere immersed in liquid aluminium and steel have been
carried out by Argyropoulos and Mikrovas [9], Argyropoulos et al.
[10]. They have given correlations for forced and natural convection
based on the measurement of the melting times of the spheres.
More recently Melissari and Argyropoulos [11,12] have conducted
an extensive numerical and experimental analyses of the melting of
pure aluminium and AZ91 magnesium alloy in the liquid bath of
same material. They found out the melting time of the immersed
sphere by recording the change in electrical resistance between the
tip of a wire inside the sphere and the bath. In another paper [13]
found the correlation for forced convection heat transfer by
correlating the Nusselt number to Reynolds and Prandtl numbers.
Although they have considered a wide range of fluids with different
Prandtl numbers for simulation but the study was limited to small
values of Stefan number signifying the low superheat (�100 �C) of
the surrounding liquid. However in practice (e.g. laser cladding
process) surrounding fluid temperature can go close to evaporation
temperature resulting in higher value of Stefan number. Therefore,
it is extremely important to study the effect of Stefan number on
the heat transfer characteristics.

The purpose of the present investigation is to develop a mathe-
matical model to study heat transfer characteristics of metal parti-
cles under a large range of superheat of the surrounding liquid,
a range of surrounding liquid velocities and Prandtl numbers. A heat
Fig. 1. Schematic diagram of melting of
transfer correlation has been developed for different Reynolds
number, Stefan numbers and Prandtl numbers. The role of Stefan
number is important, because it affects the flow characteristic
significantly, and very little information is available in the literature.

2. Mathematical model

The physical model considered for the present study is that of
a solid sphere of initial radius R0 which is kept at temperature very
close to the solidus temperature of the material. The solid sphere is
exposed to a superheated melt with inflow velocity UN. Melting
will take place at the surface and solid–liquid interface will move
into the solid. Emphasis is placed on analysis of constrained melting
which means that both solid and liquid have the same density. The
surrounding fluid is the molten phase of the same material. The
schematic diagram is shown in Fig. 1.

2.1. Governing equations

The flow around the melting sphere is considered to be laminar
as the Reynolds number is kept within 103 which is two orders of
magnitude lower than the critical Reynolds number of 3�105

beyond which isothermal flow around a solid sphere turns turbu-
lent [14]. Axisymmetric flow of Newtonian and incompressible
fluid is considered.
a sphere under forced convection.
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Fig. 2. Two-dimensional axisymmetric computational grid for the melting particle.
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The minimum inflow velocity UN can be zero. Therefore UN is
not a good scaling variable; instead a scaling velocity is found by
making Re Pr¼ 1 giving a/R0, the heat diffusion speed, as a scaling
velocity. With this new velocity scale, the non-dimensional
parameters are:

r+ ¼ r
R0

z+ ¼ z
R0

v+
r ¼

vr

a=R0
v+

z ¼
vz

a=R0
s ¼ at

R2
0

Re ¼ UNR0

n
p+ ¼ p

ra2=R2
0

h+ ¼ h� hs

hN � hs

Ste ¼ hN � hs

L
Pr ¼ n

a

Non-dimensional Navier–Stokes equations along with energy
transport equation are presented. The dimensionless variables are
distinguished from their dimensional counterparts by superscript *.

V+$v+ ¼ 0 (1)

vv+
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vs
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v+
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Fig. 3. Variation of non-dimensional effective radius with time for Pr¼ 0.01, Ste¼ 0.1
and Re¼ 1000.
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Ste

�
vfl
vs
þ
�
v+$V+

�
fl

�
(4)

Non-dimensional boundary conditions are:

Upstream 0 � r+ � 20; z+ ¼ �10 : v+
r ¼ 0; v+

z ¼ RePr;

h+ ¼ 1

Downstream 0 � r+ � 20; z+ ¼ 40 :
vv+

r

vz+
¼ 0;

vv+
z

vz+
¼ 0;

vh+

vz+
¼ 0

Axis r+ ¼ 0; �10 � z+ � 40 : v+
r ¼ 0;

vv+
z

vr+
¼ 0;

vh+

vr+
¼ 0

Lateral free stream r+ ¼ 20; �10 � z+ � 40 : v+
r ¼ 0;

v+
z ¼ RePr; h+ ¼ 1

Non-dimensional initial conditions are:

Solid sphere : h+ ¼ 0; v+
r ¼ v+

z ¼ 0

Surrounding fluid : h+ ¼ 1; v+
r ¼ v+

z ¼ 0

It is to be noted that the free stream velocity boundary
condition v+

z ¼ RePr is implemented through the use of a Rey-
nolds number. To solve the energy equation, single region (or
continuum) enthalpy formulation is implemented. A Darcy law
type porous medium formulation, due to Voller and Prakash [15],
is utilised to account for the effect of phase change on convection.
The last term in the momentum equations (2) and (3) is Darcy
damping term A+ which smoothly connects the solid region
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Table 2
Non-dimensional total time of melting for diffusion-controlled melting i.e., Re¼ 0.

Ste 0.025 0.05 0.1 0.25 0.5 1.0 1.5 2.0
Dsmelt 17.954 8.700 4.211 1.640 0.834 0.452 0.328 0.267

Re
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Fig. 5. Nusselt number results for melting of aluminium sphere in a 60 �C superheated
molten aluminium.
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(having zero velocity and infinite viscosity) to the liquid metal
(having vigorous convection and finite viscosity) through the
mushy region. This porosity function is defined as [16],

A+ ¼
�C+

0 ð1� flÞ
2

f 3
l

; C+
0 ¼

C0R2
0

r0a0
(5)

where C0¼1.016�106 kg/s m3. The liquid fraction in the mushy
region around the melting interface is calculated using linear model
which is given as follows.

pure solid; h+ � 0 : fl ¼ 0:0

mushy region; 0 � h+ � h+
l : fl ¼

h+

h+
l

pure liquid; h+ � h+
l : fl ¼ 1:0

During melting the effective radius R*(s) of the solid was
calculated based on the instantaneous volume U*(s) of the solid as

R+ðsÞ ¼
 

3U+ðsÞ
4p

!1=3

; where; U+ðsÞ ¼
Z
U

ð1� flÞdU+

A Nusselt number for the melting solid during start of melting
when the radius is R0 is derived in the Appendix. It can be
expressed in terms of the non-dimensional melting time Dsmelt of
the solid and the Stefan number as shown below.

Nu ¼ 2
3SteDsmelt

(6)
Table 1
Thermo-physical properties of some metals at melting point, SI units [21,20].

Material r m c k

Iron 7.03� 103 5.6� 10�3 824 36
Nickel 7.85� 103 4.7� 10�3 734 69
Copper 7.96� 103 4.0� 10�3 495 165.6
2.2. Solution approach

The two-dimensional axisymmetric Navier–Stokes equation
along with energy equation have been discretised on a structured
collocated, non-orthogonal multiblock grid system using finite
volume approach. The grid with five structured blocks used for this
simulation is shown in Fig. 2. The governing equations were solved
using SIMPLE algorithm of Patankar [17]. The computational
domain size used depends not only on the size of the sphere but
also on the condition to which the sphere is exposed. As we are also
solving the case of pure conduction; to impose the free stream
boundary conditions, upstream, downstream and cross stream
distances are taken equal to ten, forty and twenty times respec-
tively of the initial radius. A multiblock grid system having five
blocks of 42�102, 42� 45, 14� 9, 14� 42 and 65� 28 was found
to be sufficient to resolve the details of flow, temperature fields and
the liquid–solid interface positions based on comparison of the
streamline contours, iso-enthalpy contours and liquid–solid inter-
face positions for various grid densities inside the solid. For
example, Fig. 3 shows the variation of non-dimensional radius with
time for different grid densities inside the solid. The convergence of
the result with the increasing number of control volumes can be
seen in the plot. The convective term in the governing equations is
discretised using deferred correction approach which gives second
order accuracy. The diffusive term and the unsteady term are dis-
cretised using central difference scheme and implicit three time
level method (a quadratic backward approximation) respectively
giving second order accuracy in space and time. Detailed discussion
about implicit three time level scheme and the structured multi-
block system adopted here can be found in Ferziger and Peric [18].
2.3. Code validation

In order to validate the present numerical model two test cases
have been considered and results are compared with the estab-
lished solution found in the literature. While first test case checks
the accuracy of the present numerical method against an exact
solution, second one compares the numerical predictions against
a published experimental results.

2.3.1. Melting in a semi-infinite domain
A solid, x� 0, initially at the melting temperature Tm is consid-

ered [19]. Surface of the solid at x¼ 0 is raised to a temperature Tw

(>Tm) at time t¼ 0 and maintained at this constant value for times
t> 0. Thus melting starts at the surface and the melting front moves
in the positive x-direction. Being at the uniform temperature Tm

throughout, there is no heat transfer in the solid phase. Only
diffusion-controlled phase change with constant thermo-physical
properties values have been considered for this purpose. The exact
solution for the position of the melting front is given by
Tl Tb hl� h25�C L

1538 2860 1050� 103 247� 103

1455 2915 1109� 103 298� 103

1083 2560 670� 103 208.7� 103



Table 3
Effect of Re, Pr and Ste on non-dimensional total time of melting.

Ste Dsmelt for following Re values

1.0� 102 2.5� 102 5.0� 102 7.5� 102 1.0� 103 Pr

0.025 16.220 13.050 11.500 9.530 9.160 0.01
0.025 11.690 8.625 6.544 5.413 4.648 0.05
0.025 8.946 6.171 4.301 3.458 2.946 0.13
0.05 8.120 6.350 5.900 5.123 4.720 0.01
0.05 5.976 4.332 3.368 2.825 2.392 0.05
0.05 4.572 3.160 2.209 1.775 1.514 0.13
0.1 4.060 3.365 3.074 2.651 2.470 0.01
0.1 3.106 2.293 1.772 1.504 1.262 0.05
0.1 2.381 1.654 1.160 0.931 0.793 0.13
0.25 1.620 1.405 1.355 1.236 1.116 0.01
0.25 1.362 0.985 0.799 0.642 0.572 0.05
0.25 1.059 0.742 0.523 0.420 0.357 0.13
0.5 0.831 0.801 0.754 0.692 0.643 0.01
0.5 0.756 0.549 0.465 0.379 0.334 0.05
0.5 0.607 0.429 0.303 0.244 0.207 0.13
1.0 0.452 0.443 0.434 0.405 0.388 0.01
1.0 0.435 0.335 0.289 0.243 0.211 0.05
1.0 0.369 0.264 0.188 0.152 0.129 0.13
1.5 0.328 0.324 0.322 0.307 0.296 0.01
1.5 0.322 0.256 0.226 0.192 0.168 0.05
1.5 0.284 0.206 0.148 0.121 0.103 0.13
2.0 0.267 0.265 0.264 0.256 0.247 0.01
2.0 0.264 0.239 0.192 0.176 0.146 0.05
2.0 0.239 0.176 0.128 0.104 0.089 0.13
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sðtÞ ¼ 2g
ffiffiffiffiffi
at
p

where g is the solution of transcendental equation

geg2
erf ðgÞ ¼ cpðTw � TmÞ

L
ffiffiffiffi
p
p

For numerical purpose the semi-infinite domain is considered to
be of finite length lsolid. The thermo-physical properties of the solid,
Tw and Tm are chosen in such a way that Stefan number
Ste¼ cp(Tw� Tm)/L¼ 1. lsolid and l2solid=a are taken as the normal-
ising parameters for length and time respectively. The computed
non-dimensional melting front position with non-dimensional
time is shown in Fig. 4 for Ste¼ 1. It can be seen from the plot that
results obtained by the present numerical method compare very
well with the exact solution.

2.3.2. Melting of an aluminium sphere under forced convection
The two-dimensional laminar axisymmetric code on non-

orthogonal grid has been validated against the experimental and
numerical results of melting of an aluminium sphere under forced
convection in an enclosure by Melissari and Argyropoulos [13].
Although they have considered spheres of different materials,
different diameters and different initial conditions but we have
chosen results of immersion of aluminium spheres initially at room
temperature of 20 �C in a 60 �C superheat bath for comparison. For
calculating the dimensionless numbers constant thermo-physical
property of Aluminium at its liquidus temperature is considered
[20]. For a 60 �C superheat, Stefan number turns out to be equal to
0.178. For comparison Reynolds number Re is varied between 200
and 10,000. Fig. 5 shows the comparison between the numerical
prediction and the experimental result by Melissari and Argyr-
opoulos. It is to be noted here that these results are presented for
Nusselt number and Reynolds number based on the initial diameter
D of the sphere denoted by NuD and ReD respectively. The experi-
mental results are scattered but the matching of present computed
results with the computed results of Melissari and Argyropoulos
[13] for this large range of ReD and small Ste is good.
3. Results and discussion

The mathematical model was used to study melting of a solid
sphere under diffusion-control with static surrounding fluid (i.e.,
Re¼ 0) and melting under forced convection due to flow in the
surrounding fluid. The melting time and the rate of melting were
studied. The streamline pattern and the enthalpy field around the
melting solid are also presented. The thermo-physical properties of
some common metals at the melting temperature given in Table 1
are used as reference properties to evaluate the range of dimen-
sionless parameters. It was found that thermo-physical properties
of common metals beyond the melting point are very scarce; and if
available, it may go only up to 200–300 �C beyond the melting
point [21,20]. In this temperature range of 200–300 �C beyond the
melting point the thermal conductivity of common metals can vary
by as much as 5% and the dynamic viscosity can decrease by as
much as 25%. We have considered the case of melting a metal
spherical particle in its molten pool during laser cladding process
where metal particles of radius 10–100 mm are injected into the
melt pool with a velocity in the range 0.1–10.0 m/s. Taking a typical
value of Iron particles having radius 100 mm, velocity 10.0 m/s,
density 7.03�103 kg/m3 and viscosity 5.6�10�3 Ns/m2 Reynolds
number turns out to be equal to 1.255�103. Therefore, in the
present study we have gone up to Re¼ 103.
3.1. Total time of melting and rate of melting

In diffusion-controlled melting the solid particle remains a perfect
sphere at all times with radius decreasing with the passage of time.
Table 2 gives the non-dimensional total time of melting for the
diffusion-controlled melting at Re¼ 0. In diffusion-controlled
melting the fluid is stationery and energy equation (4) is the only
governing equation that is solved with appropriate enthalpy
boundary conditions and therefore Prandtl number Pr does not play
a role. The total time of melting is onlya function of Stefan number Ste.

To study the effect of convection, numerical simulations were
performed for five Reynolds numbers, three Prandtl numbers and
eight Stefan numbers (maximum value of Stefan number is limited
by the boiling point of the liquid metal). The total time of melting
for different cases considered in the present study is summarised in
Table 3. It is found that total time of melting decreases with
increase in Reynolds number, Prandtl number and Stefan number.
With increase in Reynolds number and Prandtl number convective
heat transfer increases which results in faster melting of solid
particle. Also by increasing Stefan number the superheat of the
surrounding fluid increases promoting conduction heat transfer; as
a consequence solid particle melts faster.

The Nusselt number for the sphere having initial radius R0 is
expressed in terms of the total time of melting and the Stefan
number as shown in equation (6). By performing the least square
fitting of the computed values, a correlation between Nusselt
number, Stefan number, Reynolds number and Prandtl number is
presented in the range 0.025� Ste� 2.0, 0� Re� 1.0�103 and
0.01� Pr� 0.13. The resultant correlation is given by equation (7)
with a standard deviation scorr¼ 1.74% and correlation coef-
ficient¼ 0.997 on 140 degrees of freedom.

Nu ¼ 2
3SteDsmelt

¼
�

1:26þ
�
�0:916þ Ste�0:061

�
Re3=4Pr2=3Ste1=4

�
Ste�0:065

(7)

From this correlation it is observed that Dsmelt decreases approxi-
mately as Re3/4, Pr2/3 and Ste5/4.
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Fig. 6. Variation of non-dimensional effective radius with non-dimensional time.
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During melting with convection the particles do not remain
spherical, therefore the effective radius based on volume was
calculated during melting. Fig. 6 shows the decrease of dimen-
sionless effective radius with dimensionless time during melting
for Stefan number of 0.025 and 2.0, for three different Reynolds
numbers (100, 500, 1000) and three different Prandtl numbers
(0.01, 0.05 and 0.13). The total melting time is maximum for Re¼ 0
i.e., diffusion case and it decreases with increase in Reynolds
number and Prandtl number as depicted in Fig. 6. But if RePr/Ste2/3

is less than 5 then melting rate approaches within 5% of the
respective diffusion case showing negligible role of convection on
total time of melting as evident from Fig. 7. In Fig. 6(b) the four
curves are for RePr/Ste2/3¼ 0, 0.63, 3.14, 6.3 and they are close to
the diffusion case of Re¼ 0. If the time is replaced with fraction
time of melting s/Dsmelt then the effective radius of solid verses
fraction of melt time plot becomes very close to the plot for diffu-
sion case as shown in Fig. 8.

3.2. Streamline and enthalpy field during melting

During melting with forced convection the rate of melting
differs in the upstream and downstream region and the particle no
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longer remains a sphere. In the upstream region convection always
aids diffusion heat transfer but it is not always so in the down-
stream region where recirculation takes place at the wake. In a two-
dimensional axisymmetric plane the streamline, enthalpy field
around the solid and the shape of the particle during melting are
presented for Reynolds number of 100, 1000, Prandtl numbers of
0.01, 0.05, 0.13 and Stefan numbers of 0.025, 2.0. The original
position of the sphere is denoted by dash–dotted semi-circle with
centre (0,0) and dimensionless radius 1; and the shaded area
indicates the solid phase at a given instant bounded by line of
dimensionless enthalpy contour h¼ 0 representing phase change
condition. Comparing the shaded region to the original particle
position one can find the amount of melting in different directions.
In streamlines contours, clockwise recirculation is denoted by
dashed lines.
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Fig. 8. Effective radius of solid verses fraction total melting time.
3.2.1. Slow flow case, Re¼ 100
Fig. 9 shows the contours of streamlines and enthalpy fields for

Re¼ 100 and Ste¼ 0.025 for Pr numbers 0.01, 0.05 and 0.13 at three
instances of time – beginning, middle and completion of melting.
The top nine plots correspond to streamlines, whereas bottom nine
plots are for enthalpy. Forced convection effects can be seen even
for Re¼ 100 as the value for RePr/Ste2/3> 5. The fluid flows over the
particle and produces a wake in the downstream region. Although
the particle remains approximately spherical it is observed that the
melting is faster in the upstream region where convection aids
conduction heat transfer and slower in the downstream region
where clockwise recirculation is visible. The effect of convection
can be realised by observing the enthalpy contours which deviate
from being concentric rings around the solid particle. The recircu-
lating cell in the downstream region of the solid produces an oval
shaped cold plume encompassed by iso-enthalpy contour h¼ 0.7.
Flow field and heat transfer characteristics changed completely
with increase in Stefan number to 2.0 in Fig. 10. Throughout the
melting process where the value of RePr/Ste2/3< 5, the enthalpy
contours are closer to concentric rings indicating the dominance of
the conduction mode of heat transfer and the strength of the wake
in the downstream region is negligible. For the case of Pr¼ 0.13 in
Fig. 10 the value of RePr/Ste2/3¼ 8.2 and a kidney shaped cold
plume appears in the downstream region in the iso-enthalpy plot.
Due to high Stefan number of Ste¼ 2.0 the melting process is
mainly driven by conduction heat transfer and the total time of
melting decreased by almost fifty-fold as compared to the low
Ste¼ 0.025.

3.2.2. Fast flow case, Re¼ 1000
Fig. 11 shows the instantaneous contours of streamlines and

enthalpy fields for Re¼ 1000, Ste¼ 0.025 and Pr¼ 0.01, 0.05 and
0.13 at the beginning, middle and end of the melting process. As
RePr/Ste2/3 exceeds 100, the effect of convection can be seen from
the beginning of the melting process. The enthalpy contours
deviate further from being concentric rings even at the beginning of
melting and the solid portion is shaped as oblate spheroid. Even the
strength of clockwise rotating recirculating cell increased markedly
due to higher Reynolds number and a kidney shaped cold plume
bounded by iso-enthalpy contour h¼ 0.7 appears in the down-
stream region as melting progresses. It is interesting to note that
melting rate of front and rear region is much faster than the sides.
The circulation in the wake region enhances the heat transfer
causing the rear portion to become flat. In turn, the flow pattern is
also affected.

Fig. 12 shows the instantaneous contours of streamlines and
enthalpy fields for Re¼ 1000 for high Ste¼ 2.0 and Pr¼ 0.01, 0.05
and 0.13 for three different instances during the lifetime of the
melting particle. With increase in Stefan number to 2.0 at Pr¼ 0.01
the value of RePr/Ste2/3¼ 6.3 signify strong conduction and the
solid remains approximately spherical during melting. But at high
Prandtl number of 0.05 and 0.13 the solid does not remain spherical
during melting. It can be easily observed from the plots that
clockwise recirculating cell grows and sustains a kidney shaped
cold plume in the downstream region that elongates as Prandtl
number increases.

3.3. Presentation of some calculated values for melting of metals

The magnitude of superheat in �C for iron, nickel and copper
corresponding to different Ste is shown in Table 4. It varies from as
low as 10 �C to as high as 800 �C. The high values are realistic for
cases where metal powder particles are melted by high energy
density sources such as lasers or electron beams. To calculate the
Nu number we consider a sphere of initial radius R0¼100 mm of



Fig. 9. Streamlines and iso-enthalpy contours for Re¼ 1.0�102 and Ste¼ 0.025 at three different instants.
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Fig. 10. Streamlines and iso-enthalpy contours for Re¼ 1.0� 102 and Ste¼ 2.0 at three different instants.
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Fig. 11. Streamlines and iso-enthalpy contours for Re¼ 1.0� 103 and Ste¼ 0.025 at three different instants.
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Fig. 12. Streamlines and iso-enthalpy contours for Re¼ 1.0� 103 and Ste¼ 2.0 at three different instants.
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Table 4
Superheat for different metals.

Ste Superheat (T� Tl) in �C

Copper (Pr¼ 0.01) Nickel (Pr¼ 0.05) Iron (Pr¼ 0.13)

0.025 10.52 10.15 7.50
0.5 210.40 203.00 150.00
2.0 841.60 812.00 600.00

A. Kumar, S. Roy / International Journal of Thermal Sciences 49 (2010) 397–408408
copper, nickel or iron at its melting temperature being injected
with a velocity of UN¼ 5.025 m/s into a liquid pool of the same
material with a moderate superheat of (T� Tl)¼ 100 �C. The Nusselt
number as per the correlation comes out to be equal to 2.7986,
4.8859 and 6.5616 for a Reynolds number of 1000.0, 839.3 and
630.8 for Cu, Ni and Fe respectively.

4. Conclusions

A two-dimensional axisymmetric model is developed to
study the heat transfer and fluid flow during melting of a metal
spherical particle in its own liquid under forced convective
regime for different Prandtl numbers and Stefan numbers. A
series of numerical study is carried out to study the combined
effects of these parameters on the resultant flow and thermal
fields. Some of the important findings of the study may be
summarised as follows:

1. A correlation formula for Nusselt number in terms of Prandtl
number, Stefan number and Reynolds number for the range
0� Re� 1.0�103, 0.01� Pr� 0.13 and 0.025� Ste� 2.0 is

Nu ¼ 2
3SteDsmelt

¼
�

1:26þ
�
�0:916þ Ste�0:061

�

� Re3=4Pr2=3Ste1=4

�
Ste�0:065
2. The dimensionless total time of melting Dsmelt decreases
approximately as Re3/4, Pr2/3 and Ste5/4.

3. The decrease of effective dimensionless radius with fraction of
total melting time has been recorded and it is very similar for
all the Reynolds number and is close to that of the diffusion-
controlled melting.

4. A critical number RePr/Ste2/3� 5 is identified below which heat
transfer characteristic is mainly governed by diffusion and the
spherical particle remains spherical during entire melting
process and hence the variation of the effective dimensionless
radius with fraction of total melting time becomes similar to
the diffusion case. At high RePr/Ste2/3 as convective heat
transfer increases there is more melting in the upstream
portion of the solid and the downstream end of the solid
becomes flat.

Appendix

Heat transfer coefficient is obtained by performing a heat
balance over the time interval, dt, as

HcðhN � hsÞ ¼ rcL
dR
dt

(8)

where all the variables are dimensional.
Here Hc¼Hc(R) is the instantaneous heat transfer coefficient for

the particle. Assuming that the Nusselt number can be expressed as
the function of the Reynolds number [14] we obtain
NufRe1=2

1ffiffiffip
and; Hcf
R

HcðRÞ ¼ Hc0
ffiffiffiffiffiffi
R0

p
1ffiffiffi
R
p

(9)

where Hc0 is the heat transfer coefficient for the initial sphere of
radius R0 at time t¼ 0. Substituting Hc from equation (9) into
equation (8) and integrating from initial radius R0 to zero over the
time interval Dtmelt we get the Nusselt number as:

Z0

R0

ffiffiffi
R
p

dR

Hc0
ffiffiffiffiffiffi
R0

p ¼ aðhN � hsÞ
kL

ZDtmelt

0

dt

2R0

3Hc0
¼ aðhN � hsÞ

kL
Dtmelt

Nu ¼ Hc0R0

k
¼ 2

3SteDtmelt

where Dsmelt is the non-dimensional total time of melting for the
particle with initial radius R0.
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